82 research outputs found

    Auroral Radio Emission from Stars: the case of CU Virginis

    Get PDF
    CU Virginis is a rapidly rotating Magnetic Chemically Peculiar star with at present unique characteristics as radio emitter. The most intriguing one is the presence of intense, 100% circularly polarized radiation ascribed to Cyclotron Maser. Each time the star rotates, this highly beamed emission points two times toward the Earth, like a pulsar. We observed CU Vir in April 2010 with the EVLA in two bands centered at 1450 and 1850 MHz. We covered nearly the whole rotational period, confirming the presence of the two pulses at a flux density up to 20 mJy. Dynamical spectra, obtained with unprecedented spectral and temporal sensitivity, allow us to clearly see the different time delays as a function of the frequency. We interpret this behaviour as a propagation effect of the radiation inside the stellar magnetosphere. The emerging scenario suggests interesting similarities with the auroral radio emission from planets, in particular with the Auroral Kilometric Radiation (AKR) from Earth, which originates at few terrestrial radii above the magnetic poles and was only recently discovered to be highly beamed. We conclude that the magnetospheres of CU Vir, Earth and other planets, maybe also exoplanets, could have similar geometrical and physical characteristics in the regions where the cyclotron maser is generated. In addition, the pulses are perfect "markers" of the rotation period. This has given us for the first time the possibility to measure with extraordinary accuracy the spin down of a star on or near the main sequence.Comment: 18 pages, 4 figures, Accepted to APJ Letter, EVLA special issu

    The nebulae around LBVs: a multiwavelength approach

    Get PDF
    We present first results of our study of a sample of Galactic LBV, aimed to contribute to a better understanding of the LBV phenomenon, by recovering the mass-loss history of the central object from the analysis of its associated nebula. Mass-loss properties have been derived by a synergistic use of different techniques, at different wavelengths, to obtain high-resolution, multi-wavelength maps, tracing the different emitting components coexisting in the stellar ejecta: the ionized/neutral gas and the dust. Evidence for asymmetric mass-loss and observational evidence of possible mutual interaction between gas and dust components have been observed by the comparison of mid-IR (Spitzer/IRAC, VLT/VISIR) and radio (VLA) images of the nebulae, while important information on the gas and dust composition have been derived from Spitzer/IRS spectra.Comment: 5 pages, 4 figures. To appear in proceedings of 39th Liege International Astrophysical Colloquium: The multi-wavelength view of Hot, Massive Star

    A massive nebula around the Luminous Blue Variable star RMC143 revealed by ALMA

    Get PDF
    The luminous blue variable (LBV) RMC143 is located in the outskirts of the 30~Doradus complex, a region rich with interstellar material and hot luminous stars. We report the 3σ3\sigma sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes. The spectral energy distribution (SED) of RMC143 suggests that two emission mechanisms contribute to the sub-mm emission: optically thin bremsstrahlung and dust. Both the extinction map and the SED are consistent with a dusty massive nebula with a dust mass of 0.055±0.018 M⊙0.055\pm0.018~M_{\odot} (assuming κ850=1.7 cm2 g−1\kappa_{850}=1.7\rm\,cm^{2}\,g^{-1}). To date, RMC143 has the most dusty LBV nebula observed in the Magellanic Clouds. We have also re-examined the LBV classification of RMC143 based on VLT/X-shooter spectra obtained in 2015/16 and a review of the publication record. The radiative transfer code CMFGEN is used to derive its fundamental stellar parameters. We find an effective temperature of ∼8500\sim 8500~K, luminosity of log(L/L⊙)=5.32(L/L_{\odot}) = 5.32, and a relatively high mass-loss rate of 1.0×10−5 M⊙1.0 \times 10^{-5}~M_{\odot}~yr−1^{-1}. The luminosity is much lower than previously thought, which implies that the current stellar mass of ∼8 M⊙\sim8~M_{\odot} is comparable to its nebular mass of ∼5.5 M⊙\sim 5.5~M_{\odot} (from an assumed gas-to-dust ratio of 100), suggesting that the star has lost a large fraction of its initial mass in past LBV eruptions or binary interactions. While the star may have been hotter in the past, it is currently not hot enough to ionize its circumstellar nebula. We propose that the nebula is ionized externally by the hot stars in the 30~Doradus star-forming region.Comment: Paper accepted by A&A on 09/05/2019 and in proof stage. Second comments by referee are included in this versio

    Anomalous Microwave Emission in HII Regions: Is it Really Anomalous? The Case of RCW 49

    Get PDF
    The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (~3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7'. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persists on angular scales from 3farcm4 to 0farcs4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ~30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks
    • …
    corecore